Phosphatidylinositol 4,5-Biphosphate (PIP2) Lipids Regulate the Phosphorylation of Syntaxin N-Terminus by Modulating Both Its Position and Local Structure

نویسندگان

  • George Khelashvili
  • Aurelio Galli
  • Harel Weinstein
چکیده

Syntaxin (STX) is a N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein that binds to the plasma membrane and regulates ion channels and neurotransmitter transporters. Experiments have established the involvement of the N-terminal segment of STX in direct protein-protein interactions and have suggested a critical role for the phosphorylation of serine 14 (S14) by casein kinase-2 (CK2). Because the organization of STX in the plasma membrane was shown to be regulated by phosphatidylinositol 4,5-biphosphate (PIP(2)) lipids, we investigated the mechanistic involvement of PIP(2) lipids in modulating both the membrane interaction and the phosphorylation of STX, using a computational strategy that integrates mesoscale continuum modeling of protein-membrane interactions, with all-atom molecular dynamics (MD) simulations. Iterative applications of this protocol produced quantitative evaluations of lipid-type demixing due to the protein and identified conformational differences between STX immersed in PIP(2)-containing and PIP(2)-depleted membranes. Specific sites in STX were identified to be important for the electrostatic interactions with the PIP(2) lipids attracted to the protein, and the segregation of PIP(2) lipids near the protein is shown to have a dramatic effect on the positioning of the STX N-terminal segment with respect to the membrane/water interface. This PIP(2)-dependent repositioning is shown to modulate the extent of exposure of S14 to large reagents representing the CK2 enzyme and hence the propensity for phosphorylation. The prediction of STX sites involved in such PIP(2)-dependent regulation of STX phosphorylation at S14 offers experimentally testable probes of the mechanisms and models presented in this study, through structural modifications that can modulate the effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PIP2 signaling, an integrator of cell polarity and vesicle trafficking in directionally migrating cells

Cell migration is a fundamental cellular process required for embryonic development to wound healing and also plays a key role in tumor metastasis and atherosclerosis. Migration is regulated at multiple strata, from cytoskeletal reorganization to vesicle trafficking. In migrating cells, signaling pathways are integrated with vesicle trafficking machineries in a highly coordinated fashion to acc...

متن کامل

Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity

Phosphatidylinositol 4,5-biphosphate (PIP2) has been implicated in a variety of cellular processes, including synaptic vesicle recycling. However, little is known about the spatial distribution of this phospholipid in neurons and its dynamics. In this study, we have focused on these questions by transiently expressing the phospholipase C (PLC)-delta1 pleckstrin homology (PH) domain fused to gre...

متن کامل

Decreased hepatic phosphatidylinositol-3,4,5-triphosphate (PIP3) levels and impaired glucose homeostasis in type 1 and type 2 diabetic rats.

BACKGROUND/AIMS Phosphatidylinositol-3,4,5-triphosphate (PIP3) and phosphatidylinositol-4,5-biphosphate (PIP2) are two well-known lipid second messengers. Polyphosphoinositides have been implicated in the regulation of the signal transduction pathways involved in glucose metabolism using cell culture studies. However, there are no in vivo studies in the literature investigating the status of PI...

متن کامل

Enzymatic synthesis of pyrene-labeled polyphosphoinositides and their behavior in organic solvents and phosphatidylcholine bilayers.

A method is reported for the synthesis of pyrene-labeled analogues of phosphatidylinositol 4-phosphate (Pyr-PIP) and phosphatidylinositol 4,5-biphosphate (Pyr-PIP2) from sn-2-(pyrenyl-decanoyl)phosphatidylinositol (Pyr-PI) using partially purified PI and PIP kinase preparations. Phosphorylation of Pyr-PI and Pyr-PIP was extensive (more than 50%) provided that the ATP concentration was high and ...

متن کامل

Selective phosphorylation modulates the PIP2 sensitivity of the CaM-SK channel complex.

Phosphatidylinositol bisphosphate (PIP2) regulates the activities of many membrane proteins, including ion channels, through direct interactions. However, the affinity of PIP2 is so high for some channel proteins that its physiological role as a modulator has been questioned. Here we show that PIP2 is a key cofactor for activation of small conductance Ca2+-activated potassium channels (SKs) by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2012